If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-24x-11=0
a = 6; b = -24; c = -11;
Δ = b2-4ac
Δ = -242-4·6·(-11)
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{210}}{2*6}=\frac{24-2\sqrt{210}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{210}}{2*6}=\frac{24+2\sqrt{210}}{12} $
| -4(3x-5)=-13(x-2) | | 348=-4x | | 15j-14j=3 | | 8-2r=38 | | 4a-7+3a+2=30 | | 10x+(3x+22)=360 | | 16c+3c+2c-4c-16c=17 | | 3-(2x-2)=8 | | -8x-25=14 | | 6z+36=3(2z+12) | | c-13=-15 | | 2=8x3=5x4=3x+100 | | 6r+r-6r=7 | | 9(w-6)=3w-42 | | (X)(5x)=180 | | r-6=+7-4r | | 4x+2x+2=2x-7 | | 1.8+2b=6.2 | | (5x)x=180 | | -7=-6÷x | | 5x^2+38x+36=0 | | 4^2x=3.4^x+10 | | -7=x÷-6 | | -7x2+9x+9=-8x2+1 | | 3x+1+146=180 | | (X)(6x+8)(x+12)=180 | | 6t-3=3 | | -4p=-5p-5 | | 7x-55=4x+32 | | 4c−3=1 | | 3x-42+42=12+42 | | 3r+2r+r-6r+4r=20 |